
BMJ Evidence- Based Medicine April 2022 | volume 27 | number 2 | 109

Evidence synthesis

Framework for the synthesis of non- randomised 
studies and randomised controlled trials: a guidance 
on conducting a systematic review and meta- analysis 
for healthcare decision making

Grammati Sarri    ,1 Elisabetta Patorno    ,2 Hongbo Yuan,3 
Jianfei (Jeff) Guo,4 Dimitri Bennett    ,5 Xuerong Wen,6 
Andrew R Zullo    ,7 Joan Largent,8 Mary Panaccio,9 
Mugdha Gokhale,10 Daniela Claudia Moga,11 
M Sanni Ali,12,13,14 Thomas P A Debray    15,16

General medicine

 ► Additional material is 
published online only. To 
view, please visit the journal 
online (http:// dx. doi. org/ 
10. 1136/ bmjebm-  2020-  
111493).

For numbered affiliations see 
end of article.

Correspondence to: 
Dr Grammati Sarri, Visible 
Analytics, Oxford OX2 
0DP, UK;  grammati. sarri@ 
visibleanalytics. co. uk

10.1136/bmjebm-2020-111493

To cite: Sarri G, Patorno E, 
Yuan H, et al. BMJ 
Evidence- Based Medicine 
2022;27:109–119.

© Author(s) (or their 
employer(s)) 2022. Re- use 
permitted under CC 
BY- NC. No commercial 
re- use. See rights and 
permissions. Published 
by BMJ.

Abstract
Introduction: High- quality randomised controlled 
trials (RCTs) provide the most reliable evidence on 
the comparative efficacy of new medicines. However, 
non- randomised studies (NRS) are increasingly 
recognised as a source of insights into the real- 
world performance of novel therapeutic products, 
particularly when traditional RCTs are impractical or 
lack generalisability. This means there is a growing 
need for synthesising evidence from RCTs and NRS in 
healthcare decision making, particularly given recent 
developments such as innovative study designs, 
digital technologies and linked databases across 
countries. Crucially, however, no formal framework 
exists to guide the integration of these data types. 
Objectives and Methods: To address this gap, we 
used a mixed methods approach (review of existing 
guidance, methodological papers, Delphi survey) 
to develop guidance for researchers and healthcare 
decision- makers on when and how to best combine 
evidence from NRS and RCTs to improve transparency 
and build confidence in the resulting summary effect 
estimates. Results: Our framework comprises seven 
steps on guiding the integration and interpretation 
of evidence from NRS and RCTs and we offer 
recommendations on the most appropriate statistical 
approaches based on three main analytical scenarios 
in healthcare decision making (specifically, ‘high- 
bar evidence’ when RCTs are the preferred source of 
evidence, ‘medium,’ and ‘low’ when NRS is the main 
source of inference). Conclusion: Our framework 
augments existing guidance on assessing the 
quality of NRS and their compatibility with RCTs for 
evidence synthesis, while also highlighting potential 
challenges in implementing it. This manuscript 
received endorsement from the International Society 
for Pharmacoepidemiology.

Introduction
Comparative effectiveness research is a key step 
in the evaluation of novel therapeutic products. 
Although randomised controlled clinical trials 
(RCTs) are the established method for providing 

information on the relative efficacy and safety 
of health interventions, it may be impractical 
to conduct them, and those available may be 
sparse, small and potentially unrepresentative of 
the patient populations or conditions found in 
real- world settings. Consequently, evidence from 
such studies alone might not reliably reflect how 
medical interventions are likely to perform when 
used in everyday clinical care.1–3 For this reason, 
there has been a growing demand, especially 
from regulatory bodies (Food and Drug Admin-
istration [FDA], European Medicines Agency 
[EMA]) to incorporate real- world evidence (RWE) 
from routine clinical practice as found in non- 
randomised studies (NRS) to complement informa-
tion from RCTs and potentially cover the ‘efficacy- 
effectiveness’ gap.4–7 The regulatory acceptance of 
RWE will present the challenge to other healthcare 
decision- makers (payers, health technology assess-
ment (HTA) bodies) to increasingly use NRS for 
their policy decisions. Such evidence is potentially 
available via healthcare claims databases, elec-
tronic health records (EHR), patient registries,8–10 
and cohort and case–control studies, facilitated 
by the emergence of digital technologies,9 and the 
promotion of exchange of EHRs across countries.9 
These changes have occurred in parallel with 
increasing pressure from patient advocacy groups 
to consider more patient- centred information in 
health products value assessments.11

Need for guidance
The International Society for Pharmacoepidemi-
ology (ISPE) Comparative Effectiveness Research 
(CER) Special Interest Group (SIG) has previously 
commented on the challenges of using RWE from 
NRS in assessing comparative treatment effects. It 
has also highlighted how recent methodological 
advances can help to address inherent limitations 
of NRS, such as selection and confounding.12 
Recent publications have emphasised the need 
for ongoing discussion among stakeholders about 
when and how data from NRS can be used when 
the ‘totality of evidence’ is considered for assessing 
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medical products, including complementing RCTs, to strengthen 
evidence packages for novel treatments.13–15 However, there is 
a lack of methodological guidance on selection, appraisal and 
synthesis of evidence across different study designs in a consistent 
and reproducible manner. Other researchers are working on 
similar frameworks with a focus on specific conditions, such as 
cancer.16 This methodological gap has been a key cause of the 
scepticism of regulators and healthcare decision- makers towards 
adopting novel methodologies proposed for the analysis of NRS.7 
Our proposed, comprehensive framework provides much- needed 

guidance to fill in these knowledge gaps to ensure the validity of 
non- RCT results.

Summary points of the framework
This framework is intended for use when NRS is considered for 
CER (or otherwise called relative effectiveness assessment in the 
EU HTA context) to address limitations of RCTs for licensing appli-
cations for primary conditional or secondary approvals in other 
indications, or to provide additional information for regulatory 
or reimbursement decisions for existing (standard of care) treat-
ments.17 For instance, the framework could be relevant for rare 
diseases, in which conducting traditional RCTs may be imprac-
tical (eg, due to recruitment difficulties). It might also facilitate 
assessment of real- world performance of products in patients with 
multiple comorbidities or at longer time points.

For the purposes of the framework, NRS is defined as those 
where the assignment of patients to a therapeutic product is not 
determined by a trial protocol; where additional diagnostic or 
monitoring procedures are not used or do not influence the care 
patients receive but instead represent routine clinical practice.3 10 
It is also assumed that NRS data can be collected either prospec-
tively or retrospectively by observation in routine clinical prac-
tice, and can be analysed using epidemiological (biostatistical) 
methods.

Framework aims and development
The goal for our framework (figure  1) is to enable the trust-
worthy generation of results from combining NRS and RCT data, 
by providing specific recommendations on the appraisal tools of 
study quality, how to select the most reliable NRS evidence for a 
quantitative analysis with RCTs and various statistical approaches. 
More specifically, it comprises seven steps, some of which are well- 
established processes in evidence- based medicine (eg, systematic 
search and identification of relevant evidence (steps 1 and 2)) and, 
as such, are not described in full herein (readers should follow 
the guidance by Cochrane,18 the Preferred Reporting Items for 
Systematic Reviews and Meta- Analyses (PRISMA) guidelines19 
and the Strengthening the Reporting of Observational Studies in 
Epidemiology Statement20). The goal is to provide specific recom-
mendations for the critical appraisal of NRS (steps 3 and 4), for the 
implementation of statistical approaches to combine the results 
from NRS and RCTs (steps 5 and 6), and for facilitating a reliable 
interpretation of pooled (meta- analysed) results (step 7). For that 
reason, a mixed- methods approach was adopted for retrieving 
the most relevant literature and capitalising on the multidiscipli-
nary experience of the working group on pharmacoepidemiology, 
observational statistical analysis and healthcare decision making. 
For step 3, we conducted a systematic literature review following 
PRISMA guidelines and searching indexed databases (Embase, 
PubMed) and general websites for tools that evaluated the validity 
of NRS from inception to November 2019 (online supplemental 
table 1) and online supplemental figures 1 and 23). In addition, a 
Delphi survey among the ISPE CER SIG was conducted to iden-
tify the main critical elements that can threaten the validity of 
NRS and developed the evaluation framework for assessing the 
validity of existing tools (Supplementary figure 2). For steps 4–7, 
we used a snowballing approach to perform reference checking 
of relevant publications (already known to the working group) 
from previous or ongoing RWE initiatives and key organisations 
(such as the Innovative Medicines Initiative [IMI] GetReal, FDA 
RWE Framework, Institute for Clinical and Economic Review 
[ICER], EMA, Duke- Margolis Institute, HTA bodies, International 
Society for Pharmacoeconomics and Outcomes Research ([ISPOR]/

Summary box

What is already known about this subject?
 ► Non- randomised studies (NRS) are increasingly 
recognised as being complementary to randomised 
controlled trial evidence for making credible 
estimates of the comparative treatment effects of 
medical products.

 ► The lack of methodological frameworks to 
guide synthesis of results of NRS with those of 
randomised clinical trials (RCTs) is a major cause of 
the low uptake of cross- study design synthesis for 
healthcare decision making and has been widely 
recognised by different organisations.

 ► "What can our framework offer"?
 ► We propose a seven- step framework to 
systematically identify evidence for NRS, critically 
appraise and appropriately synthesise it with the 
results from RCTs.

 ► Our framework considers three main analytical 
scenarios based on the evidence- generation 
needs for a healthcare decision- making problem; 
‘high- bar,’ ‘medium’ and ‘low’ depending on 
whether evidence from randomised trials or 
non- randomised studies is the main source for 
trustworthy summary treatment effect estimates.

 ► Our framework emphasizes that the effect estimates 
from all the randomised and non- randomised 
evidence should not directly be combined in a meta- 
analysis without any type of statistical adjustment. 
When cross- design synthesis is considered 
appropriate, our framework guides researchers to 
select the most relevant statistical technique for an 
analytical scenario, such as using evidence from 
non- randomised studies as priors, in three- level 
hierarchical models and in bias- adjusted analysis. 
Expert clinical opinion and statistical expertise is 
required to avoid misleading results from combined 
analysis of non- randomised and randomised 
studies and increasing the risk of poorly informed 
healthcare decisions with harmful consequences to 
patients.

 ► "How might this framework impact healthcare 
decision- making in the future?"

 ► This framework will ultimately facilitate decisions 
around if, when and how evidence from NRS can 
be combined along RCTs and produce reliable 
treatment estimates applicable to a specific 
targeted population relevant for healthcare 
decision-making.
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ISPE endorsed publications) and publications from selected jour-
nals (such as Clinical Pharmacology and Therapeutics, Research 
Synthesis Method and Statistics in Medicine).

Steps of a systematic review combining NRS and RCTs 
(1–4)
Step 1: defining the research question and identifying 
systematically the evidence
The identification and synthesis of all available relevant evidence 
(RCTs or NRS) in healthcare decision making must be done in 
a systematic, reproducible and rigorous way to ensure unbiased 
results regarding the effectiveness and safety of medical products. 
Accordingly, we recommend that, before any quantitative analysis 
comparing effects of different medical treatments is considered, 
researchers and healthcare decision- makers should specify a clear 
research question that defines the scope (‘conceptual step’21), the 
Population, Intervention, Comparison, Outcomes, Study design 
and Time (PICOST) criteria. The PICOST can be used to conduct a 
scoping literature review and determine the need for summarising 
evidence across RCTs and NRS. It is, for instance, possible that 
published RCTs are scarce, or do not provide much information on 
important outcomes (eg, when serious harms of a medical treat-
ment are rare or do not occur during the RCT follow- up). This 
decision may depend on both the frequency of an outcome but 
also on its importance/weight for the decision making.18

When setting the PICOST criteria, it is advisable to search the 
COMET database and record if a core outcome set is available for 
the condition of interest. Additional searches, such as the Outcome 
Measures Framework by the Agency for Healthcare Research and 
Quality and recent movements by EU IMI2 initiatives (Big Data 
for Better Outcomes) may facilitate the selection of standardised, 
measurable real- world outcomes.

When defining the research question, reviewers should also 
prespecify a list of ‘core’ confounders for which adjustment is 
deemed necessary in NRS. ‘Core’ confounders are defined as 
measured variables that influence treatment assignment, are 
predictive of the outcome and remove confounding when adjusted 
for. It is also helpful to identify, at this stage, (eg, intermediate or 
collider) variables that should not be adjusted for in NRS. A prac-
tical approach for preselecting ‘core’ confounders is to leverage 
prior knowledge of causal relationships for the specific decision 
problem (eg, by constructing causal diagrams22) and/or eliciting 
expert clinical opinion.

We advise readers to follow the detailed guidance by the 
Cochrane Collaboration (chapter 24) on this topic and apply addi-
tional search strategies to overcome specific challenges associ-
ated with the identification of NRS (eg, insufficient indexing of 
older NRS, large volume of evidence retrieved, additional time 
and resources for searching, identification of multiple publica-
tions and avoidance of ‘duplicate’ data set analyses).23–25

Step 2: data extraction
This critical step of the framework will largely determine the avail-
ability of key information, and therefore, the selection of NRS 
to be considered in the quantitative synthesis of evidence across 
study designs (step 5 in the framework).26–28 Well- established data 
collection processes such as using a predefined data extraction 
template and dual extraction by two independent reviewers should 
be followed.25 Incomplete data have been widely recognised as an 
important challenge when NRS are used in CER. The ability to link 
databases is a useful way to fill any data gaps but also to vali-
date the data, therefore related datasets should be carefully cross 
referenced and extracted.29–31 In general, reporting of information 
for each NRS should follow the same principles as the extraction 
of RCTs; information on study design, population, interventions, 
types of analyses and summary treatment effect statistics (such 
as extracting of treatment effect estimates using time- to event 
models and avoiding binary outcomes)30–32 Additional data should 
be extracted to facilitate the assessment of different type of biases 
(eg, selection, attrition bias, outcome reporting bias). For instance, 
it is recommended to extract a list of confounders considered for 
the adjusted treatment effect analyses, or the method of propen-
sity score adjustment.

With regard to extraction of summary effect estimates, when 
adopting non- collapsible effect measures such as ORs or HRs, it is 
important to distinguish between marginal (ie, population average 
unadjusted) and conditional (ie, covariate- adjusted) treatment 
effects.33 34 Marginal effect measures greatly depend on the distri-
bution of patient characteristics, and may vary even in the absence 
of confounding.35 Previous research has shown that the difference 
between marginal and conditional effects can be substantial, espe-
cially when the number of prognostic factors exceeds five, the OR 
is above 1.25 (or smaller than 0.8), or the incidence proportion is 
between 0.05 and 0.95.34 For this reason, pooling of marginal OR 
or HR estimates in such situations is not recommended. Further, 
when the marginal effect sizes are of primary interest, it may be 

Figure 1 International Society for Pharmacoepidemiology (ISPE) CER SIG framework for combining NRS with RCTs. CER, comparative effectiveness 
research; NRS, non- randomised studies; RCT, randomised controlled trial; SIG, Special Interest Group.
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helpful to distinguish between the average treatment effect in the 
entire targeted population and the average treatment effect on 
the treated group in the study. These estimands target different 
populations or subgroups within the same population, and there-
fore can yield different treatment estimates.36 The relevance of 
(differences in) estimands is further discussed in steps 5–7. Finally, 
estimates that are not directly available from the publication can 
sometimes be derived from other reported information.30–32

Step 3: critical appraisal of available data sources
Following previous guidance,37 38 the group strongly recommends 
that both RCTs and NRS should rigorously be assessed for their 
validity and credibility before any cross- design synthesis can be 
considered. Results from the Delphi survey which was conducted 
as part of this framework development identified the following 
methodological challenges most associated with NRS (box 1).

Although tools for critical appraisal are widely available,39 40 
they vary considerably in their content (quality topics covered). 
The choice of appraisal tool is therefore a concern, as it may 
affect the selection of NRS for quantitative analysis and credi-
bility of subsequent meta- analysis results. We recently conducted 
a systematic review to evaluate existing tools for critical appraisal 
of NRS and found that most of these cover the critical quality 
domains (box 1). Unfortunately, items to identify some fatal meth-
odological flaws (eg, inability to conduct a study using new- user 
design or active comparator design, immortal time bias, depletion 

of susceptibles, reverse causation), and assessing issues around 
the internal and external validity of NRS results are currently 
missing in most of the existing tools. Based on our findings, we 
recommend ROBINS- I and GRACE as these tools cover most issues 
that are commonly encountered in NRS. However, it is advised 
to perform a supplementary assessment on the domains not fully 
covered by these tools (online supplemental figure 3). Tools for 
assessing RCTs have been reviewed previously and the use of 
Cochrane Risk of Bias tool is recommended,41 as use of this is 
already an established practice in assessing the quality of RCTs.

Step 4: other issues to consider: small-study effects and 
publication bias
Critical appraisal tools may help to discover important limitations 
of NRS and RCTs but are not sufficient to identify all potential 
sources of bias in a quantitative synthesis. Researchers should 
also be alert to the possibility and implication of small- study 
effects for both RCTs and NRS. Small- study effects refers to the 
generic phenomenon that smaller studies show different, possibly 
larger, treatment effects than large studies; this may reflect that, 
there is a higher chance for a small study with positive results 
(strong treatment effect) to be published compared with a study 
of a similar size but with negative results (publication bias)42 or 
when small studies are of low quality (eg, when at increased risk 
of outcome selection or reporting bias or due to increased clinical 
heterogeneity).43 It is likely that the susceptibility to small- study 
effects differs between RCTs and NRS in line with differences in 
the standards that typically govern their design, conduct and 
reporting; for example, NRS may be potentially at a higher risk of 
publication bias compared with RCTs. However, these differences 
may become less of an issue given the recent efforts to improve 
the design and reporting of NRS. Since small- study effects may 
affect the validity of meta- analysis results (especially if random- 
effects model is applied), an evaluation is recommended to deter-
mine whether study results are associated with the size of the 
study. This should be done separately for RCTs and for NRS, 
and if possible, also separately for different types of NRS. This 
assessment can, for example, be based on a funnel plots of study 
results.44 Unfortunately, statistical tests for analysing funnel plots 
suffer from low power and cannot determine definitively whether 
meta- analysis results are invalid.45 46 Accordingly, their use is best 
limited to exploring (rather than trying to confirm) any concerns 
about publication bias.

Steps of a quantitative analysis of effect estimates 
across study designs (5–7)
Meta- analysis, the statistical technique to combine the study 
results into a weighted average, while accounting for the preci-
sion of each study estimate, is widely being employed by deci-
sionmakers to quantitatively synthesise evidence from multiple 
sources (‘totality of evidence approach’) and produce compara-
tive estimates of effects for the new technology under assessment 
compared with standard clinical care. Researchers and health-
care decision- makers should consider the following underlying 
concerns about NRS before combining results from such studies 
with RCT data in evidence synthesis:

 ► NRS are more prone to selection and confounding biases than 
RCTs.

 ► Estimands defined in RCTs are not necessarily transferrable 
towards NRS and vice versa. It is, therefore, important to 
consider the applicability of study results with respect to the 
review question.

Box 1 Methodological challenges to be addressed 
by quality tools for non- randomised studies

 ► Methods for selecting participants (sampling 
strategies to correct selection bias, inclusion and 
exclusion criteria of target population, depletion of 
susceptibles, external validity of target population).

 ► Definition and measurement of exposure, outcomes, 
covariates and follow- up.

 ► Methods to address specific sources of bias through 
study design (new user design, active comparator 
design, methods to correct for immortal time bias 
or time- window bias, detection or surveillance 
bias, lost to follow- up bias, non- contemporaneous 
comparator bias, reverse causation, 
misclassification bias).

 ► Confounding (study design to minimise 
confounding, key confounders measured 
and included in statistical analysis, potential 
unmeasured confounding addressed in the analysis 
(please see online supplemental figure 4) for a 
summary of methods to adjust for either known or 
unknown confounding).

 ► Lack of appropriateness of statistical analyses 
(with specific mention of overadjustment, and/or 
incorrect outcome model specification).

 ► Methods for assessing statistical uncertainty in the 
findings.

 ► Methods for assessing internal validity (eg, 
sensitivity analysis addressing potential 
confounding, measurement error or other biases).

 ► Methods for assessing external validity (eg, post 
hoc subgroup analysis, validation of results with 
other similar population).
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 ► Special consideration needs to be paid in selecting the appro-
priate techniques for dealing with incorrect or missing values 
(including outcomes).

 ► Analyses that weight studies by simple quality scores should 
be avoided.

 ► Summary effect estimates of treatments that are based on 
data from RCTs and NRS, may be biased and imprecise, even 
after applying the recommended statistical methodology. Fur-
ther sensitivity analyses are always recommended to explore 
the impact of modelling assumptions.

 ► When RCTs and NRS are combined through network meta- 
analysis, there is a need for deeper investigation of ‘transitiv-
ity’ (ie, no systematic differences between the available treat-
ment comparisons other than the treatments being compared 
in the analysis) than when only RCTs are included.

Step 5: selecting the most relevant analytical scenario
The critical appraisal tools cited in step 3 along the other critical 
domains identified by this group which are not covered by the 
existing tools may help identify which NRS have enough validity 
to be considered for evidence synthesis along RCTs. However, 
given that these tools primarily aim to assess the internal validity 
of studies, researchers are urged to also consider issues around 
external validity (generalisability or applicability) in relation to 
the PICOST criteria set up for the specific research question under 

assessment. It is not advisable to use NRS which are assessed 
at critical risk of bias (step 3) for combined analysis with RCTs 
to avoid misleading and untrustworthy meta- analysed results. 
This approach differs from that recommended in RCTs meta- 
analyses, where low- quality studies are usually only excluded in 
a sensitivity analysis. Depending on the context of the review, 
the research question and the contribution of NRS in the health-
care decision making problem (eg, if the product is for primary 
or secondary approval), it may be necessary to perform a critical 
appraisal separately for each outcome. For example, the pres-
ence of selection bias may be less relevant when assessing safety 
outcomes as compared with effectiveness outcomes.

We consider below three analytical scenarios that may generate 
new evidence and various examples of weighting between new 
(RCT) and prior (NRS) evidence for an effectiveness labelling 
change or an assessment of new products (figures 2 and 3). The 
selection of the most applicable scenario for a given healthcare 
decision problem will depend on the (1) clinical context (‘rele-
vance or applicability’), (2) completeness of RCT data (‘evidence 
gaps’) and (3) the magnitude and direction of possible biases of 
NRS (‘data rigour or quality’). These scenarios are linked with the 
hypothetical examples of the types of studies (RCTs, NRS) that 
may be primarily considered for regulatory decision- making as 
detailed in the white paper by Duke Margolis Center for Health 
Policy.17 The corresponding methods outlined in this framework 

Figure 2 Evidence generation needs in healthcare decision setting and use of non- randomised studies (NRS) with randomised controlled trials (RCTs).

Figure 3 A seven- sStep decision algorithm for the synthesis of non- randomised studies (NRS) and randomised controlled trials (RCTs) in healthcare 
decision- making (ISPE CER SIG framework). CER, comparative effectiveness research; ISPE, International Society for Pharmacoepidemiology; PICOST, 
Population, Intervention, Comparison, Outcomes, Study design and Time; SIG, Special Interest Group.
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are based on generalised linear mixed models and can be used 
to summarise many types of association (eg, HR, OR and change 
score). A critical consideration for each of these scenarios is the 
attempt to quantify bias in NRS. A helpful review of methods and 
results from previous studies comparing (and sometimes meta- 
analysing) RCTs with NRS is provided in the HTA No. 21.7 by 
the UK National Institute for Health and Research online supple-
mental appendix 2.47

For studies assessed as ‘unclear risk of bias’, their a priori 
exclusion from further analyses with RCTs is not recommended. 
However, for scenarios 2 and 3, their inclusion may directly affect 
the pooled treatment effect estimates (in comparison to scenario 
1) and should therefore only be explored in a sensitivity anal-
ysis. More specifically, any bias concerns about treatment effects 
estimates should be explored at a later step using predesigned 
sensitivity analyses.

Before any cross- design synthesis of RCTs and NRS is consid-
ered, the direction of treatment effects between study designs 
should be investigated and assessed if it differs substantially 
(eg, evidence from NRS suggests no effect whereas good- quality 
RCTs suggest a strong effect). Several reviews have found little 
difference between the evidence from observational studies and 
RCTs,48–50 but counterexamples exist.51

Furthermore, it is important that appropriate statistical models 
are applied to combine comparative treatment effects from NRS 
and RCTs, as studies will often differ with respect to their validity 
(risk of bias) and applicability.52 It is rarely justifiable to directly 
combine the effect estimates from all the randomised and non- 
randomised evidence in a meta- analysis without any type of cross- 
design statistical adjustment.53 54 In many situations, the observed 
differences between the results from RCTs and NRS are prone to 
much uncertainty. It is therefore recommended to adopt analyt-
ical methods that distinguish between the two data sources (RCTs 
and NRS) and allow for some bias corrections (when this discrep-
ancy cannot be explained by differences in study design and 
selection of populations). The implementation of these methods 
is not straightforward and will often require advanced statistical 
support. A description of approaches for combining RCTs with 
NRS has been presented as part of the GetReal WorkPackage 4 and 
is summarised in online supplemental table 2.

Scenario 1: high-evidence bar situation
RCTs are generally considered the gold standard for generating 
evidence about the efficacy of medical interventions as they are 
designed to test treatment effects while essentially balancing 
for all other factors (known and unknown) that may affect their 
response to treatment. For some decision making problems, such 
as a new product likely to significantly increase drug spending 
or a product label expansion supporting a superiority claim, the 
evidence generation needs are high and RCTs are the preferred 
source of estimating comparative treatment effect estimates. 
However, in some circumstances described previously, there may 
still be a desire to augment the evidence from RCTs with results 
from NRS without directly performing cross- study design meta- 
analysis. This strategy may be instrumental when RCT evidence 
is very imprecise (eg, results are only reported for surrogate 
outcomes), not reflective of the patient population of interest or 
not covering important patient groups, even when the evidentiary 
needs for the decision problem are high.

In this circumstance, a natural approach is to treat the NRS 
data as prior evidence for the RCT analyses, adopting a Bayesian 
estimation framework.54 55 Here, the NRS data are summarised 
using a (network) meta- analysis and, if necessary, adjusted for a 

predefined amount of bias. The bias adjustment can be performed 
in different ways depending on the source of bias and the gran-
ularity of available data. For instance, it is possible to directly 
adjust for (differences in) measurement error or missing data 
with imputation methods. Alternatively, it is possible to apply 
corrections to the study results by eliciting expert opinion or 
using the credibility ceiling correction. The latter approach (cred-
ibility ceiling correction) assumes that no single NRS can provide 
a maximum credibility ceiling above a certain percentage.56 The 
results of the NRS analysis are then used as the prior distribution 
for the (network) meta- analysis of the RCT data. In other words, 
this approach will ‘pull’ the treatment- effect estimates from the 
RCTs toward the (adjusted) summary effects from the NRS. By 
default, the prior distribution(s) has the precision of the summary 
effect estimate(s) from the NRS. However, it is possible to decrease 
the precision of the prior distribution(s) by considering additional 
sources of uncertainty, such as the presence of between- study 
heterogeneity in the NRS results. A sensitivity analysis should also 
be conducted to adjust each NRS in the meta- analysis for various 
ceiling percentages and to observe the direction of effects and 
consistency in the conclusions obtained (step 6).

Scenario 2: medium-evidence bar situation
In some circumstances, NRS are likely to provide additional 
(complementary) information about the effectiveness and safety 
of medical interventions, but their results cannot be directly used 
as prior information for the RCT results. This situation may arise 
when RCTs only provide evidence on short- term or surrogate 
endpoints (eg, when RCTs have low applicability),57 or when an 
approved product is being tested in another (beyond its marketing 
authorisation) indication. Treatment effects are then likely to 
differ between the RCTs and the NRS, such that greater efforts 
are needed to disentangle the potential sources of between- study 
design heterogeneity.

A simple solution is to consider the use of three- level hier-
archical models.54 55 These regression- based models use the first 
level to model variation within individual studies, the second 
level to model variation between studies, and the third level to 
model variation between RCTs and NRS.58 They typically assume 
that the treatment effects are different, but exchangeable, across 
different types of studies, and allow for differences in between- 
study heterogeneity within randomised and non- randomised data 
sources.

Like traditional meta- analysis methods, summary estimates 
of treatment effects generated by three- level hierarchical models 
represent a weighted average of the included studies. However, the 
meta- analysis now yields a summary of treatment effect for each 
distinct study design and an overall treatment effect across all 
study designs. The overall treatment effect is then pulled towards 
the results from large, homogeneous studies that share a common 
design. In addition, because the contribution of each study is 
adjusted for its study design, estimates of precision are likely to 
better reflect the various sources of uncertainty (due to bias or 
heterogeneity).

Scenario 3: low-evidence bar situation
In some situations, NRS may be the most reliable source of infer-
ence for obtaining and assessing the external validity of compar-
ative effect estimates. It is, for instance, possible that published 
RCTs are scarce, or have very poor quality. It is also possible that 
results from RCTs have limited external validity or applicability 
about the research question, for instance in postmarketing settings 
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where the focus is on safety and long- term outcomes. Although 
corresponding pooled results can be summarised using traditional 
random- effects meta- analysis methods, researchers should always 
evaluate the impact of potential bias(es) arising from the synthesis 
of individual NRS alone or in combination with RCTs.59 Methods 
to record and assess the types of bias(es) at the NRS (study) level 
have already been captured under steps 2 and 3.

While developing this framework, the application of several 
methods was reviewed. These methods have been developed for 
adjusting for bias in a meta- analysis of NRS and RCTs which may 
be applicable to different healthcare decision making problems, 
depending on the specific biases associated with the NRS under 
consideration. These methodological approaches may adjust the 
meta- analysis model to account for bias parameters (eg, for ascer-
tainment or disease onset misclassification bias,60–63 misclassifi-
cation of exposure or outcome,64 or uncontrolled confounding).65 
The application of bias adjustments has been widely advocated 
in the estimation of treatment effects by NRS and should also 
be considered during their meta- analysis.66–69 For healthcare 
decision- makers, quantifying bias is a critical step, for instance, 
through clinician and patient surveys or consensus meetings.67 
This method proposes to construct an idealised study (where all 
questions can be answered) and ask assessors to elicit the likely 
magnitude and variance of various types of biases including 
both internal and external validity bias.70 Expert elicitation is 
a complex task, because the magnitude of bias always remains 
uncertain and quantifying the level of uncertainty is part of the 
elicitation process. Estimates of bias(es) can then be used to adjust 
the extracted treatmente ffect estimates, and/or to decrease the 
precision of NRS results accounting for both the magnitude and 
the uncertainty of the potential bias(es). The adjusted estimates 
can then be pooled using traditional (network) meta- analysis 
methods—an approach known as a design- adjusted analysis.55 
This method, which aims to reduce decision uncertainty, is widely 
used in HTAs, particularly for economic modelling.70

Alternatively, it is possible to perform data- driven bias adjust-
ments in evidence synthesis. Several methods have been proposed 
for integrating bias modelling in the meta- analysis, and these 
commonly assume that (some of) the NRS overestimate the true 
treatment effect.58 A recent approach called hierarchical meta- 
regression (HMR) distinguishes between biased and unbiased study 
results and derives the risk of bias automatically from observed 
study design features (eg, the results from an appraisal of study’s 
quality71 72). A mixture model is then used to convert the observed 
treatment- effect estimate into an unbiased effect. Thus, HMR can 
identify studies presenting conflicting evidence and downplay 
their contribution in the (network) meta- analysis.

Step 6: quantifying and examining statistical heterogeneity
As previously mentioned, it will often be difficult to avoid statis-
tical heterogeneity in a meta- analysis especially when NRS are 
included. These studies are often prone to residual confounding and 
may therefore affect pooled estimates of relative treatment effects 
even when excluding studies at high risk of bias and/or adopting 
advanced meta- analysis methods. Therefore, exploring differences 
between RCTs and NRS results in a meta- analysis is an important 
step in evidence synthesis.73–76 This can be achieved by adopting 
random effects models and quantifying the presence of between- 
study heterogeneity. In practice, when substantial between- study 
heterogeneity is present, the ‘average’ effect may no longer be 
an appropriate summary estimate. Between- study heterogeneity 
typically occurs when there are interactions between the treat-
ment effect and the study or a study- level variable, or when the 

treatment effect varies across patients.77 To assist the interpreta-
tion of between- study heterogeneity, researchers may derive τ2 or 
I2 statistics although these metrics have limited clinical interpreta-
tion, especially when used in isolation. More relevant for health-
care decision making is the construction of (approximate) predic-
tion intervals. Prediction interval depict the expected range of true 
effects in future studies if those settings are similar to the settings 
included in the meta- analysis (please see further details on how 
to calculate a prediction interval in the publication by Riley et 
al78) which offer advantages in examining whether the variation 
of effect estimates is attributable to between- study heteroge-
neity and enabling the decision makers to interpret the impact of 
heterogeneity in relation to harm and clinical benefit thresholds 
(commonly used by decision- makers).78 79 Meta- regression might 
be also a way of exploring potential sources of between- study 
heterogeneity, such as the presence of publication bias, differences 
in study design or differences in the control treatment.80 However, 
this approach has very low power and is prone to ecological bias 
when used to investigate summarised participant- level charac-
teristics (eg, mean age) as modifier of treatment effect. Several 
authors have, therefore, recommended the retrieval and inclusion 
of individual- participant data,81 a topic beyond the scope of this 
manuscript.

Finally, in all analytical scenarios, as previously noted, 
prespecified sensitivity analyses should be performed to assess the 
extent to which the cross- synthesis results from NRS and RCTs are 
credible and, understanding the impact of assumptions made in 
the selection and analysis of NRS by omitting individual studies 
(eg, in terms of NRS study design, study quality, outcomes time 
points or other statistical methods employed) on the treatment 
effects. These sensitivity analyses should focus on key issues that 
may potentially introduce uncertainty in the estimates of effects 
(even though it might be, in some cases, difficult to quantify) and 
lower the credibility of NRS in the decision making.

Step 7: interpretation of effect estimates
Aiming towards increasing the credibility of treatment effects 
estimates by inclusion of NRS, the interpretation of the results 
of any quantitative synthesis of NRS and RCTs should always 
consider the following three points: (1) the quality of the included 
studies (both RCTs and NRS), (2) the robustness of adopted analyt-
ical methods and (3) the results of any sensitivity analyses. Since 
random- effects summary estimates may be of limited value in 
the presence of substantial heterogeneity, prediction intervals 
may help to explore their potential impact on decision making 
(although it can only be calculated when the meta- analysis 
includes at least three studies and is most appropriate when the 
studies have low risk of bias).78 This group discussed how this 
step of the framework is heavily dependent on the methods, and 
the context stipulated different regulatory, payer or reimburse-
ment bodies and the level of certainty/confidence in results they 
set as thresholds in their decision making.82 For example, there 
may be a preference for certain types of evidence (including RCT 
and NRS) to support economic arguments in the postregulatory 
environment. Furthermore, when a health economic analysis for 
new medical technologies is required in the technology’s assess-
ment, a probabilistic scenario analysis of economic modelling can 
provide different thresholds of ‘trust’ in the results generated by 
combining NRS and RCT data. However, for organisations that 
only assess the clinical effects of new products, more scrutiny may 
be placed on the selection of the most appropriate comparative 
analytical approach and the consistency of results between NRS 
and RCTs.
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Conclusion
Recent developments in the NRS landscape and the lack of trust 
among stakeholders in the wider application of such evidence in 
healthcare decision making have highlighted the pressing need 
for methodological standards in this area. In particular, this 
requires widespread understanding of, and familiarity with, the 
methodological and analytical approaches of NRS that are most 
likely to offer decision making bodies the level of scientific rigour 
and certainty they require to rely on evidence from NRS when 
combined with RCTs. There must also be a recognition of key 
challenges in the use and interpretation of NRS in this setting 
and the fact that these will vary with the specific methodolog-
ical or clinical issues to the decision problem under consideration. 
Advanced statistical support may be required to undertake some 
of the proposed analyses of combined analyses of RCTs and NRS. 
Against this background, our proposed framework aims to set up 
clear guidance for considering evidence across different study 
designs—specifically RCTs and NRS—and ensure appropriate, well- 
established approaches are followed in combining evidence from 
these sources. We believe it will improve transparency and build 
confidence in the use of NRS effect estimates and will prompt 
discussion among regulators and healthcare decision makers who 
may be sceptical toward the standardised adoption of these novel 
methodologies (previously described as the ‘methodology aversion 
in drug regulation’).83 The timing of this framework development 
is also highly relevant, given that many decision making frame-
works are currently undergoing revisions to acknowledge and 
identify ways to incorporate the potential value of NRS in their 
assessments. However, persistent issues related to poorly reported 
publications, data inaccessibility from RWE repositories and data 
governance (which were beyond the scope of this framework) are 
critical to overcome in order for industry, healthcare bodies and 
decision makers to explore the added value of NRS and test the 
application of the proposed methods for our framework. A manda-
tory national registry for NRS along with strict protocols in anal-
ysis and reporting of data (as previously recommended by ISPOR/
ISPE taskforce) would provide a platform to further increase the 
credibility of evidence from NRS.

Therefore, readers are encouraged to consider these recommen-
dations alongside previous guidance related to the design of NRS 
such as study registration (particularly for hypothesis- evaluating 
treatment effectiveness studies), data collection (primary or 
secondary), source validation and results reproducibility, topics 
not covered by our framework.45 53 67 84–88 In the future, expanding 
this framework by considering analyses involving reweighting 
RCT evidence with real- world NRS evidence89 or using individual 
patient data or syntheses of RCT and NRS to inform the design 
of subsequent RCTs in a clinical development programme90 could 
provide greater clarity in other healthcare situations. Further 
research on analytical methods that may reduce areas of uncer-
tainty in estimating treatment effects from NRS (such as esti-
mating the degree of error in the estimates, investigating the role 
of machine learning for improving confounder adjustment in 
EHRs) is much needed.

The next phase of this framework will be testing and validating 
the proposed recommendations using case studies from NRS and 
RCTs in a specific healthcare decision problem and disseminating 
the findings to a wider audience. This validation stage should 
provide additional insights into the utility of the framework in 
a real- world healthcare decision- making setting and, therefore, 
could be updated with new methodologies and help to build 
trust in its reproducibility. We hope that our framework may also 

guide researchers to appropriately design and primarily analyse 
evidence from NRS (accounting for different types of biases) to 
meet the high standards rightly expected by healthcare decision- 
makers and highly deserved by patients.
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