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Abstract
While decisions made according to Bayes’ theorem are 
the academic normative standard, the theorem is rarely 
used explicitly in clinical practice. Yet the principles can 
be followed without intimidating mathematics. To do 
so, one can first categorise the prior-probability of the 
disease being tested for as very unlikely (less likely than 
10%), unlikely (10–33%), uncertain (34–66%), likely 
(67–90%) or very likely (more likely than 90%). Usually, 
for disorders that are very unlikely or very likely, no fur-
ther testing is needed. If the prior probability is unlikely, 
uncertain or likely, a test and a Bayesian-inspired 
update process incorporating the result can help. A posi-
tive result of a good test increases the probability of the 
disorder by one likelihood category (eg, from uncertain 
to likely) and a negative test decreases the probability by 
one category. If testing is needed to escape the extremes 
of likelihood (eg, a very unlikely but particularly dan-
gerous condition or in the circumstance of population 
screening, or a very likely condition with a particularly 
noxious treatment), two tests may be needed to achieve. 
Negative results of tests with sensitivity ≥99% are suf-
ficient to rule-out a diagnosis; positive results of tests 
with specificity ≥99% are sufficient to rule-in a diagno-
sis. This method overcomes some common heuristic 
errors: ignoring the base rate, probability adjustment 
errors and order effects. The simplicity of the method, 
while still adhering to the basic principles of Bayes’ 
theorem, has the potential to increase its application in 
clinical practice.

Bayes’ theorem1 remains the normative standard for diag-
nosis, but it is often violated in clinical practice. Attempts 
to simplify its application with diagnostic computer 
programs,2 3 nomograms,4 rulers5 or internet calculators6 
have not helped to increase its use. Bayes’ theorem helps 
overcome many well-known cognitive errors in diagno-
sis, such as ignoring the base rate, probability adjustment 
errors (conservatism, anchoring and adjustment) and 
order effects.7 Bayes’ theorem and its underlying precepts 
are introduced early in medical school and medical texts, 
for example, Chapter 3 of 392 chapters in Harrison’s 
Principles of Internal Medicine.8 Even so, adherence to 
Bayes’ principles is all but absent – low probability dis-
eases are still tested for causing unneeded cost and risk, 
and high probability diseases are ignored when a single 
negative test returns.

The basic idea of Bayes’ theorem for medical diag-
nosis is well accepted. A diagnosis is not necessarily 
confi rmed just because a test was positive. Diagnosis is 
usually not a binary decision (ie, true of false) turning on 
a single datum, but a dynamic probabilistic assessment. 
The post-test probability (also called the updated prob-
ability, posterior-probability or positive-predictive value) 
of a diagnosis is dependent on how likely the  diagnosis 

was before the test was done (the pretest probability, 
also referred to as the prevalence or prior-probability), 
the test result (positive or negative) and the ability of 
the test to discriminate between those affl icted and not 
affl icted with the disease (test characteristics expressed as 
sensitivity and specifi city, or likelihood ratios). A simple 
formula, Bayes’ theorem, combines these elements to pro-
duce the post-test probability of the disease. A positive 
test increases confi dence in a diagnosis, but usually does 
not indicate certainty. Whether this confi dence exceeds a 
treatment (or action) threshold9 remains a decision for the 
clinician and patient. Likewise, a negative test decreases 
confi dence in a diagnosis, but rarely rules it out com-
pletely. It is up to those involved to decide if further action 
is warranted.

What if an easy, non-mathematical method to apply 
these concepts were available? Could the application of 
Bayes’ theorem fi nd its appropriate place in clinical prac-
tice and not be relegated to academic exercises for medi-
cal students and residents? Could its benefi ts in clinical 
practice fi nally be realised? There is a simple, qualitative 
or categorical application of Bayes’ theorem that might 
ease the application of Bayes’ underlying precepts. The 
method is based on categorising the pretest probabil-
ity and handling a small set of probabilistic categories 
instead of the full spectrum of continuous probabilities, 
thus eliminating the need for mathematical calculations. 
In this paper, we fi rst introduce this qualitative method. 
Then we present the mathematical justifi cation for the 
method and the conditions under which it holds. Finally 
we present some special cases that reinforce the method.

Qualitative Bayes’ theorem
Bayes’ theorem’s concepts can be applied using qualita-
tive methods. First one must commit to the pretest prob-
ability – how likely the diagnosis is from the start. This 
probability is expressed categorically – very unlikely (less 
likely than 10%), unlikely (between 10% and 33%), uncer-
tain (between 34% and 66%), likely (between 67% and 
90%) or very likely (more likely than 90%) (table 1).

If the initial assessment is very unlikely or very likely, 
then in most cases it is not worth further testing according 
to Bayes’ theorem – the results would either confi rm what 
is already near certain or it would minimally move the 
post-test probability in the opposite direction. Either way, 
the clinician would not normally take additional actions. 
There are at least two situations where it is still important 
to proceed with further testing. First, if the diagnosis is 
very unlikely but needs to be ruled out with more cer-
tainty, as in a very dangerous disease, the clinician may 
want to proceed with testing. For example, at what prob-
ability is the clinician willing to send a patient home in 
whom a diagnosis of subarachnoid haemorrhage is being 
considered? Similarly, if the diagnosis is very likely, but 
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needs to be ruled in with more certainty, such as when 
the treatment is especially dangerous or noxious, further 
testing is indicated. For example, at what probability is 
the clinician willing to commit a patient with liver disease 
to a course of anticoagulation with warfarin for a deep 
venous thrombosis?

If the probability is in one of the intermediate catego-
ries, then further testing is appropriate. The clinician may 
order a test and then interpret the results. A positive result 
moves the clinician to the next more likely category. A 
negative result moves the clinician to the next less likely 
category.

For example, if the clinician is seeing a 35-year-old 
man in the offi ce who presents with substernal, exer-
tional chest pain that was relieved with rest, the patient 
has anginal chest pain. His pretest probability of hav-
ing coronary artery disease (CAD) is likely, about 70%.10 
Further testing is warranted and a stress test is ordered. If 
the result is negative, the diagnosis of CAD is uncertain – 
not absent. If the result is positive, CAD is very likely. 
But, if the patient were a woman, her pretest probability 
of having CAD is unlikely (about 26%). Further testing is 
also warranted. In this circumstance, if the stress test is 
negative, the diagnosis of CAD is very unlikely. If the test 
is positive, CAD is uncertain – not defi nitively present.

When does the qualitative approach to 
 applying Bayes’ theorem work?
Using the above intuitive cut-offs, and tests with sensi-
tivities and specifi cities between 80% and 90%, the above 
procedure is a good approximation to Bayes’ theorem. 

A graphical approach to Bayes’ theorem can demon-
strate how the qualitative approximation works (fi gure 
1). Here the horizontal-axis is the pretest probability, 
the curves represent the relationship between the pre-
test probability and the post-test probability for a given 
sensitivity and specifi city (80% for each in this example, 
roughly corresponding to the test characteristics for a 
nuclear stress test) and the vertical-axis is the post-test 
probability. The diagonal line is usually included and 
represents no change in the post-test probability with 
the test result (ie, the test did not change the clinician’s 
assessment of the probability). Separate curves represent 
a positive result (green), which increases the post-test 
probability (ie, is above the diagonal line), and a negative 
result (red), which reduces the post-test probability. To 
use Bayes’ theorem, one starts on the horizontal-axis at 
the appropriate pretest probability and draws a vertical 
line until it intersects the appropriate curve for a positive 
(green) or negative test (red) result. One then draws a 
horizontal line to fi nd the appropriate post-test probabil-
ity on the vertical-axis. Figure 1 exemplifi es this for the 
case above, a man with anginal chest pain and a positive 
stress test. One fi rst locates 70% on the horizontal-axis, 
follows the arrow up until it intersects the positive result 
(green) curve, then follows the arrow horizontally until it 
intersects the vertical-axis at the post-test probability of 
90%. A similar procedure is followed for a negative test, 
using the red line, giving a post-test probability of 37%.

In the categorical case, all the pretest probabilities 
between 67% and 90% (the likely category) need to be 
considered while holding the sensitivity and specifi city 
constant at 80%. This only needs to be done for the lower 
(67%) and the upper limits (90%), see fi gure 2. For a posi-
tive test, the post-test probabilities range between 89% and 
97% (arrows). To get the lower limit of post-test probability 
for a positive test, one follows the arrow from a pretest 
probability of 67% up until point A in fi gure 2 (where the 
arrow intersects the curve representing Bayes’ theorem’s 
post-test probability for a positive result), and then reads 

Table 1 Categorical probabilities

Categorical probability Numerical probability

Very unlikely Less likely than 10%
Unlikely Between 10% and 33%
Uncertain Between 34% and 66%
Likely Between 67% and 90%
Very likely More likely than 90%

Figure 1 Graphical interpretation of Bayes’ theorem.

Figure 2 Graphical interpretation of Bayes’ theorem for 
a range of pretest probabilities from 67% to 90% (likely 
category).
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the post-test probability (89%) off the vertical-axis. For 
the upper limit of the post-test probability, one follows the 
arrow from a pretest probability of 90% up until point B 
in fi gure 2, and then fi nds the post-test probability (97%) 
on the vertical-axis. This gives the range of post-test prob-
abilities for the likely category. For a negative result, the 
post-test probabilities range between 33% and 69%.

Next, expand the range of sensitivities and speci-
fi cities from 80% to 90%, representing good tests. Now, 
instead of a (green) curve to represent the relationship 
between pretest and post-test probabilities, we have a 
(green) band (fi gure 3). Like before, one follows the arrow 
from the pretest probability until it fi rsts meets the band 
(A in fi gure 3) to get the lower limit of the post-test prob-
ability and until it meets the top of the band (B in fi gure 3) 
to get the upper limit of the post-test probability. For the 
likely category examined above, we can see that the post-
test probabilities for a positive test now range between 
89% and 99% – almost all in the very likely category – and 
for a negative test between 18% and 69% – almost all in 
the uncertain or unlikely categories. The transformation 
of the pretest probabilities is shown as the purple inverted 
‘L’ in fi gure 3. The results for all the categories are shown 
in fi gure 4 and table 2.

The method is an approximation. It forces a Bayesian 
inspired analysis on the interpretation of test results and 
gives results consistent with Bayes’ theorem. The approx-
imation is weakest in the two cells with contradictory 
data (eg, unlikely with a positive test result and likely with 
a negative test result) as expected. The results remain a 
good approximation even with expanded ranges for test 
characteristics (sensitivity and specifi city). For example, 
if the range of test characteristics is between 70% and 
80%, probability cut-offs of <20%, 20–45%, 46–55%, 
56–80% and >80% work well. Since the method is only 
an approximation and our estimates of pretest probabili-
ties are also poor estimates, just using the cut-offs likely, 
uncertain and unlikely will suffi ce.

Special cases
Rule-in and rule-out tests – tests in which a single result 
is capable of near defi nitively ruling-in or ruling-out 
a diagnosis – are important. For example, a low brain 
natriuretic peptide is suitable for ruling-out systolic heart 
failure. Any test with sensitivity greater than 99% is suffi -
cient to rule-out a diagnosis from even the likely category 
(SnOUT) and any test with specifi city greater than 99% 
is suffi cient to rule-in a diagnosis from even the unlikely 
category (SpIN).

In the very categories, since the curves are fairly fl at 
in this region (fi gure 1, for example), two tests might be 
needed to produce a clinically signifi cant change in the 
probabilities.

This method does not apply to most screening tests 
because the pretest probabilities are so low. The method 
reminds the clinician that a positive result on a screen-
ing test is usually not diagnostic, because the change in 
probabilities is not large enough with a single test. It will 
usually take two tests to go from very unlikely (as target 
conditions are in the general population) to very likely 
(the fi nal probability a clinician is interested in before 
undertaking a colectomy, mastectomy or prostatectomy). 
For example, a 45-year-old woman has a 5-year probabil-
ity of having breast cancer of about 1%.11 The sensitivity 
of routine screening mammography ranges from 71% to 
96% and the specifi city ranges from 94% to 97%.12 Using 
values of 80% for sensitivity and 96% for specifi city, a 
positive test increases the probability to 17%. Using the 
qualitative categories described herein, the woman’s risk 
of breast cancer would go from very unlikely to unlikely 
with the single positive screening test.

Many diseases and tests have appropriate prevalences, 
and sensitivities and specifi cities for the tests published, 
for example, tropinin I for myocardial infarction13 or 
urine Chlamydia infection in men.14

Summary
In summary, here is a qualitative procedure to follow to 
approximate the results of a Bayesian diagnostic decision 
analysis.

What is the pretest probability of the disease being 1. 
considered? Ideally this comes from an evidence-
based source. If it is very likely (<10–20%) or very 
unlikely (>80–90%), in general, no further testing is 
needed.
One fi rst categorises the pretest probability as 2. likely, 
uncertain or unlikely.
If the test is positive, the post-test probability increases 3. 
by one qualitative category (eg, unlikely to uncer-
tain). If the test is negative, the post-test probability 
decreases by one qualitative category (eg, unlikely to 
very unlikely).
This process continues until the clinician is comfort-4. 
able enough with the confi dence in the diagnosis 
considering the patient’s preferences, the risk of the 
disease and the effects of treatment.
Negative tests with sensitivities near 99% can almost 5. 
certainly rule out a disease, since the post-test sensi-
tivity will be very unlikely even if the original pretest 
probability was likely. Similarly, positive tests with 

Figure 3 Graphical interpretation of Bayes’ theorem for 
a range of pretest probabilities from 67% to 90% (likely 
category), and sensitivities and specificities ranging 
between 80% and 90%.
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specifi cities near 99% can almost certainly rule in a 
disease.
If the pretest probability was 6. very likely or very 
unlikely, and further testing is indicated, two tests are 
needed to escape the very categories. This is because 
the change in the probabilities is small within these 
categories. Two concordant results are needed to 
change out of the very categories.

Figure 4 Graphical interpretation of Bayes’ theorem for a categorical probabilities, and sensitivities and specificities 
between 80% and 90%.

Table 2 Pretest and post-test probabilities for a 
categorical version of Bayes’ theorem

Category

Test result

Positive Negative

Unlikely 0.31 0.82 0.01 0.11
Uncertain 0.66 0.95 0.05 0.33
Likely 0.89 0.99 0.18 0.69
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